特集
はてなのMackerelが明かす、機械学習プロジェクトに潜む2つの「不確実性の山」を乗り越えるコツ:手掛かりは「スクラム」「ゲームソフト開発」(2/2 ページ)
2019年8月29〜31日に開催された「builderscon tokyo 2019」のセッション「われわれはいかにして機械学習プロジェクトのマネージメントをすべきか」で、はてなの「Mackerel」のディレクターが機械学習技術の開発における「不確実性」のマネジメント術を説明した。
MLプロジェクトならでは、もう一つの不確実性の山「テスト工程」
Copyright © ITmedia, Inc. All Rights Reserved.
関連記事
- 「データセットの準備を丸投げしない」――健康管理アプリ「FiNC」AI開発5つの教訓
ヘルスケアプラットフォームアプリ「FiNC」を開発するFiNC Technologiesで代表取締役CTOを務める南野充則氏は、AI研究開発プロジェクトを通じて得た「5つの教訓」を紹介した。その教訓とは。 - 「失敗しないAI開発プロジェクト」の作り方をエンジニアに聞いた
さまざまなAI開発現場を渡り歩いた現役のエンジニアが、「AI開発プロジェクトを成功させる開発チーム作り」について、国内のさまざまな企業や有識者を集めたイベント「THE AI 2018」で語った。 - 「データサイエンス部隊が内製で切磋琢磨」から方針転換――機械学習/AIプロジェクトが守るべき4つの骨子
リクルートジョブズが機械学習/AIをサービスに活用するプロジェクトで得た知見を紹介する連載。初回は、リクルートジョブズでデータサイエンス部隊が立ち上がった頃に起こった問題について。