Microsoftの音声認識技術、「テープ起こしのプロ」の精度に 研究チームが発表:単語エラー率5.1%を達成
Microsoftの研究チームは、Switchboard音声認識タスクで「5.1%」の単語エラー率を達成したと告知。2016年に「音声文字起こしのプロ並みにエラーが少ない」とした単語エラー率5.9%を上回る数値を記録した。
Microsoftは2017年8月20日(米国時間)、同社の先端技術研究チームであるMicrosoft Researchの構築した音声認識システムが、業界標準のSwitchboard音声認識タスクで「5.1%」の単語エラー率(Word Error Rate:WER)を達成したと発表した。
Microsoft Researchは2016年10月、音声文字起こしのプロ並みにエラーが少ないことを示す、WER 5.9%の達成を発表していたが、これを上回る認識精度を今回の2017年版で実現した。研究チームは併せて、このシステムの詳細を解説した技術論文「The Microsoft 2017 Conversational Speech Recognition System」も公開している。
単語エラー率の測定に使われたSwitchboardは、電話での会話データを広く収集したもので、20年以上にわたって音声認識システムの評価に使われている。2016年に達成したWER 5.9%は当時、Switchboard音声認識タスクで記録された最も低い数値であり、研究チームはこの成果について、「コンピュータが、初めて会話内の単語を人間並みに認識できたことを意味する」としていた。
Microsoft Researchは、あれから約10カ月でエラー率を約12%低減させることができた理由を以下のように説明している。
「音声認識システムで採用しているニューラルネットワークベースの音響モデルと言語モデルに一連の改良を加えた。例えば、音響モデルを改良するために、CNN-BLSTM(Convolutional Neural Network combined with Bidirectional Long-Short-Term Memory:畳み込みニューラルネットワークと双方向長短期記憶の組み合わせ)モデルを追加で導入。また、複数の音響モデルそれぞれに基づく予測の集約を、フレームレベルと単語レベルの両方で行うようにした。
さらに、会話セッションの全履歴を使って、会話の次の流れを予測させた。これによって、音声認識システムの言語モデルが強化され、このモデルが会話のトピックやローカルなコンテキストへの適応を効果的に行えるようになった。Microsoftのディープラーニングソフトウェア Cognitive Toolkit(CNTK)2.1をモデルアーキテクチャの探索や、モデルのハイパーパラメータの最適化に利用したことによる恩恵も大きかった」
併せて、Microsoftのクラウドインフラ投資、特にMicrosoft AzureにおけるGPUインスタンスサービスの性能強化も、モデルの訓練や新しいアイデアのテストを効果的かつ迅速に行うのに役立ったとしている。
Microsoftは、人間並みの音声認識精度を実現することは、過去25年間の研究目標の1つであり、長期的な研究に積極的に投資してきたことが「コルタナ(Windows 10に搭載される音声アシスタント)」「Presentation Translator(PowerPointプレゼンデータをリアルタイム翻訳)」「Microsoft Cognitive Services(感情検知や画像認識、音声認識、自然言語理解などの機能をアプリケーションに追加できるAPI群)」といった製品やサービスとして実を結んだと述べている。
今後の研究開発課題として、「周囲の騒音が大きい場合」や「話者との距離が離れている場合」、また利用可能な訓練データが限られる「なまり」などにも対応した認識精度の向上が挙げられる。コンピュータに発話情報をテキスト化させるだけにとどまらず「その意味や意図も理解させる。つまり音声認識から音声理解につなげる」ことも大きな研究テーマだという。
Copyright © ITmedia, Inc. All Rights Reserved.
関連記事
- コンピュータが、初めて会話内の単語を「人間並み」に認識できた
マイクロソフトが、「会話内の単語を人間並みに認識できる」音声認識システムを開発したと告知。音声認識率を劇的に向上させる突破口が開いたという。 - 音声→テキスト変換のSpeech Recognition APIの使い方と、2017年4月におけるWatson、Google Cloud Speech APIとの違い
コグニティブサービスのAPIを用いて、「現在のコグニティブサービスでどのようなことができるのか」「どのようにして利用できるのか」「どの程度の精度なのか」を検証していく連載。今回は、Speech Recognition APIの概要と使い方を解説し、他のサービスとの違いを3パターンで検証する。 - マイクロソフト、無償ディープラーニングツールキットの最新版「CNTK 1.5」を公開
マイクロソフトは、プログラミング言語やツール機能、テキスト/音声読み取り機能を強化したオープンソースのディープラーニングツールキット「CNTK 1.5」をリリースした。 - マイクロソフト、AI研究者向けに“10万件”のデータセット「MS MARCO」を無償公開
マイクロソフトが、AIシステムの訓練に使える10万件のデータセット「MS MARCO」を公開した。匿名化された実際のデータを使った質問と回答のセットが含まれ、AIを用いた認知システムの開発を支援できるという。