検索
ニュース

手作業によるラベル付けを不要に 東京大学の郭威助教らがアノテーションの自動化手法を開発AIモデルの汎用(はんよう)性を向上

東京大学の郭威助教らの研究グループは、ある品種に対して学習させたAIモデルを別の品種向けに検出精度を落とすことなく変換できる「モデル汎化法」を開発した。

Share
Tweet
LINE
Hatena

 東京大学大学院農学生命科学研究科付属生態調和農学機構の助教を務める郭威氏らの研究グループは2021年6月1日、教師データを作るための手作業によるラベル付け(アノテーション)を不要とする手法を開発したと発表した。既存の画像検出AI(人工知能)モデルを別の検出対象に流用する際に、自動的にアノテーション作業を実施する。

画像
アノテーション作業済みのみかんの画像(左)からりんご(中央)とトマト(右)の「アノテーションされた画像」を生成

手間がかかるアノテーション作業

 研究グループによると「園芸分野でのAIの活用が進んでおり、果実の検出と計数に向けて深層学習を活用した自動検出技術などが利用されている。だが、こうした技術は『正解となる画像を基にした学習』(教師あり学習)を利用しているため、品種が変わると学習をやり直す必要があった」という。

 アノテーション作業は一つ一つの画像にラベルを付ける必要があるため、時間と労力がかかる。この作業の負担を減らすために、「能動学習」を用いた「弱教師あり学習」や合成データを用いた学習といった手法はあるが、検出精度が実用レベルに満たないなどの課題があった。

検出精度を落とすことなく別の品種で構築したAIモデルを変換

Copyright © ITmedia, Inc. All Rights Reserved.

ページトップに戻る