検索

特集:AIOpsとは何か〜インフラ運用、AIで変わること、変わらないこと〜

TopStory

特集:AIOpsとは何か(3):

システムの安定した稼働を守ることが求められる「IT運用」の現場において「AIOps」による業務の自動化、効率化への関心が高まっている。商社のインフラサポートエンジニアとしての職務経験の中で、自ら機械学習を応用した遠隔サポートシステムを開発した園山淳也氏に「AIOps」の有効性や未来像を聞いた。

(2020年1月21日)
特集:AIOpsとは何か(2):

ITシステム/サービスがビジネスとイコールの関係になっている今、運用管理の在り方こそが「ビジネスの成果」を左右し得る状況になっている。こうした中、一部で注目を集めているAIOps(Artificial intelligence for IT Operations)は運用管理者の役割をどう変えていくのだろうか。

(2020年1月17日)
特集:AIOpsとは何か(1):

ITがビジネスを加速させる昨今、多くの新規サービスが開発、リリースされ、運用管理者には安定したサービスの供給や、利用動向のログを解析することが求められている。だが、これに伴い解析すべきログや拾うべきアラートも増す一方となり、多大な負担が運用管理者の身に振り掛かっている。こうした中、AIを利用したIT運用「AIOps」が注目されている。では企業がAIOpsを取り入れる上で必要なこととは何か。運用管理者は、AIとどう向き合うべきなのか。本特集では、そのヒントをお届けする。

(2019年10月29日)

関連記事

Gartner Insights Pickup(127):

ITサービスの停止やパフォーマンスの低下は、ビジネス上の損失に直結する。では、サービスの吐き出す膨大なログデータを、サービス品質の向上や維持にどうつなげればいいのか。ここで検討すべきなのがAIOps(Artificial intelligence for IT Operations)だ。

(2019年10月4日)
@ITソフトウェア品質向上セミナー2018:

九州のISPサービスを担う、QTnet運用エンジニア木村氏は、ITインフラの監視に機械学習を活用し、これまで見えていなかった異常の検知や予測に取り組んでいる。「機械学習に関しては、ほぼど素人の取り組みだが、ソフトウェア開発に活用する際のヒントになれば」と謙遜しながら、その歩みを紹介した。

(2019年2月12日)
手掛かりは「スクラム」「ゲームソフト開発」:

2019年8月29〜31日に開催された「builderscon tokyo 2019」のセッション「われわれはいかにして機械学習プロジェクトのマネージメントをすべきか」で、はてなの「Mackerel」のディレクターが機械学習技術の開発における「不確実性」のマネジメント術を説明した。

(2019年10月4日)
「データベースを超える機能」:

 IBMはAmazon Web Services(AWS)上でのフルマネージドDb2サービス、「IBM Db2 Warehouse Flex on AWS」を2019年3月末に提供開始する。日本IBMは2019年3月26日、これを本社に先がけて明らかにした。また、IBMは2019年5月を目途にDb2の機能を拡充し、同製品を「AIデータベース」として推進していくという。

(2019年3月27日)
Gartner Insights Pickup(81):

ハイパーコンバージドインフラ(HCI)は、オンプレミスインフラの柔軟化、アジャイル化の推進に貢献する。I&Oリーダーが今、HCIを今後にわたり活用するための4つのポイントをまとめた。

(2018年10月19日)
自動化、自己保護、自己修正が可能な自律型DBの新サービス:

Oracleは、自律型データベース「Oracle Autonomous Database」のポートフォリオを構成する新サービス「Oracle Autonomous NoSQL Database」の提供を開始する。低レイテンシやデータモデルの柔軟性、弾力的なスケーリングといった要件を持つNoSQLアプリケーションに対応する。

(2018年10月4日)
ワークスペース環境を「AIOps」で分析:

Lakeside Softwareは「Lakeside SysTrack 8.4」を発表した。IT運用支援ツール「AIOps」を提供し、技術者が対応するエンドユーザーからの問い合わせやインシデントの数を削減するという。日本では、2018年第四半期に提供を予定している。

(2018年9月6日)
機械学習による「自律型データベース」:

日本オラクルは、「Oracle Autonomous Data Warehouse Cloud」の提供を国内で開始した。簡単な設定で、自動バックアップや暗号化、パッチの自動適用が可能になる他、高可用性に対応するデータベースシステムも構築できる。

(2018年4月23日)

日本ユニシスと日立が、システム障害に対するエンジニアの呼び出し要否の判断をAIで自動化する共同検証を開始。金融機関の基幹システムの本番運用環境で行い、機械学習したAIが判断するとともに、オペレーターの判断を継続的に学習しながら判断精度の向上を図る。

(2018年4月6日)

日立が、JP1の最新版「JP1 V11.5」をリリース。デジタルビジネス時代を見据えた業務システムの大規模化に対応する機能などを強化。機械学習の活用を支援する関連サービスも加わった。

(2017年10月31日)
ページトップに戻る