ニュース
AIのトレーニング時間を60%以上短縮する新手法を開発、米大学:AIアプリの開発を加速
ノースカロライナ州立大学の研究チームが、ディープラーニングネットワークのトレーニング時間を、精度を損なうことなく60%以上短縮する「Adaptive Deep Reuse」という手法を開発した。
ノースカロライナ州立大学の研究チームが、ディープラーニング(深層学習)ネットワークのトレーニング時間を、精度を損なうことなく60%以上短縮し、新しい人工知能(AI)アプリケーションの開発を加速する「Adaptive Deep Reuse」(適応型深層再利用)という手法を開発した。
同大学のコンピュータサイエンスの教授を務め、論文の共著者であるXipeng Shen氏は次のように述べている。
「新しいAIツールの開発で直面する最大の課題の一つが、ディープラーニングネットワークのトレーニングだ。このネットワークがアプリケーションに関連するデータパターンを特定し、それに反応できるようにするために、多くの時間とコンピューティングパワーが必要だ。われわれはこのプロセスを迅速化するAdaptive Deep Reuseという手法を考案した。この手法を使うと、精度を落とさずにトレーニング時間を最大69%短縮できた」
どうやって高速化したのか?
Copyright © ITmedia, Inc. All Rights Reserved.
関連記事
- ディープラーニングの欠点をカバー、多変量データを短時間観測して将来動向を高精度予測――東京大学の研究グループが新理論を構築
ディープラーニングでは大量の教師データを集めることが前提となる。だが長期間にわたって時系列データを集めることは難しい。東京大学生産技術研究所の合原一幸教授らの研究グループは、多変数からなる過去の動向を短時間観測したデータを使って、この前提を崩す研究成果を発表した。遺伝子発現量や風速、心臓疾患患者数などの実際の時間データに対して予測を行い、有効性を確認したという。 - 「インターネット」で勝てなかった日本が、「深層学習」で勝つには 東大・松尾豊氏
NVIDIAが開催した「GTC Japan 2018」で、東京大学 特任准教授、日本ディープラーニング協会 理事長の松尾豊氏が登壇。深層学習の原理や、深層学習に関する研究の現状について説明し、今後、実社会で深層学習がどう扱われていくのか、持論を展開した。 - ニューラルネットワーク、Deep Learning、Convolutional Neural Netの基礎知識と活用例、主なDeep Learningフレームワーク6選
最近注目を浴びることが多くなった「Deep Learning」と、それを用いた画像に関する施策周りの実装・事例について、リクルートグループにおける実際の開発経験を基に解説していく連載。初回は、ニューラルネットワーク、Deep Learning、Convolutional Neural Netの基礎知識と活用例、主なDeep Learningフレームワーク6選を紹介する。