検索
ニュース

機械学習ツールキット「Kubeflow 1.0」をGoogleが公開、「Anthos」と組み合わせると何ができるのか自動スケーリングを利用可能

Googleは、オープンソースのKubernetes対応機械学習(ML)ツールキットの正式版「Kubeflow 1.0」を公開し、企業がKubeflowをGoogle Cloudの「Anthos」プラットフォーム上で利用するメリットを紹介した。

Share
Tweet
LINE
Hatena

 Googleは2020年3月3日(米国時間)、オープンソースのKubernetes対応機械学習(ML)ツールキットの正式版「Kubeflow 1.0」を公開した。同時に、企業がKubeflowをGoogle Cloudの「Anthos」プラットフォーム上で利用するメリットを紹介した。Kubeflowは、Googleが2017年12月に立ち上げたオープンソースプロジェクト。

 MLライフサイクル全体にわたって、企業がオープンソースのデータサイエンスやクラウドネイティブエコシステムを利用して、ソフトウェア開発とMLのインフラを共通化したり、標準化したりする際に、Kubeflowが役立つという。

 Kubeflowは、スケーラブルでポータブルなMLワークロードの開発に加えて、オーケストレーションやデプロイ、実行のためのKubernetesネイティブプラットフォームを提供すると、Googleは説明している。Kubeflowの開発ではコントリビューターコミュニティーの強力なサポートを得たという。

なぜAnthosなのか

 Google CloudのAnthosプラットフォームをKubeflowで用いる理由は何だろうか。

 まず、MLワークフローをハイブリッドまたはマルチクラウド環境で実行できるようになる。同時にGoogle Cloudの「Google Kubernetes Engine」(GKE)が備えるエンタープライズ向けのセキュリティや自動スケーリング、ロギング、アイデンティティー(ID)機能を利用できるからだ。

 Anthosは、ハイブリッドクラウドやマルチクラウド環境に向けたオープンアプリケーションプラットフォームであり、Googleが開発に深く関与したオープンソース技術(Kubernetes、「Istio」「Knative」など)を基盤としている。GKEは、エンタープライズ向けの安全なマネージドKubernetesサービスだ。

 Googleは、Anthos上でKubeflow 1.0を利用するメリットを次のようにより詳しく説明している。

セキュリティの維持に役立つ

 データサイエンティストが生産性を発揮するには、KubeflowダッシュボードやJupyter UI、TensorBoardといったUIに容易にアクセスできる必要がある。同時に安全性も確保されていなければならない。

 KubeflowをAnthosにデプロイすれば、「BeyondCorp」とも呼ばれるGoogle Cloudのゼロトラストアクセスソリューション「Cloud Identity-Aware Proxy」(IAP)を使用して、Kubeflowを保護できる。

 IAPを使うことで、IP(企業ネットワークなど)やデバイス属性(最新版のソフトウェアを適用したものに限るなど)に基づいて、Kubeflowへのアクセスを制限できる。IPとデバイス属性の組み合わせも可能だ。

自動スケーリングを利用可能

 KubeflowをAnthosにデプロイすれば、KubeflowはGKEの自動スケーリングとノードの自動プロビジョニングを利用できる。つまり、ワークロードに基づいて、クラスタを適切なサイズに拡張できる。

 既存のノードプールのリソースが、未処理のワークロードをスケジューリングするのに不十分な場合は、ノードの自動プロビジョニングにより、新しいノードプールを自動的に作成する。例えば、GPUリソースが要求されると、GPUノードプールを自動的に追加する。

 この他、保留中のポッド(Pod)をスケジューリングする十分なキャパシティーがない場合は、自動スケーリングによって、仮想マシン(VM)を既存ノードプールに追加できる。

ログ取得と検索が容易

Copyright © ITmedia, Inc. All Rights Reserved.

ページトップに戻る