機械学習関連で最も人気があるのはPython/NumPy/TensorFlow――GitHubが調査C++も健闘

GitHubによれば、2018年に最もコントリビューションが多かった機械学習関連プロジェクトはTensorFlowだった。機械学習向けで人気のプログラム言語はPythonで、最も利用されているPython向けライブラリはNumPyだった。Julia言語へのコントリビューションも多かった。

» 2019年01月31日 11時30分 公開
[@IT]

 ギットハブ・ジャパンは2019年1月29日、2018年内にコードのプッシュなどコントリビューションがあった機械学習向けプロジェクトに関する調査結果を、同社の公式ブログで公開した。

 最もコントリビューションが多かったプロジェクトは「TensorFlow」。機械学習向けで最も多く利用されていたプログラミング言語はPythonだった。PythonはGitHub全体でも3番目に人気のある言語だという。

 「machine-learning」というトピックでタグ付けされたリポジトリで多く使われているプログラミング言語のトップ10は次の通り。

機械学習向けで最も利用が多かったプログラミング言語(出典:ギットハブ・ジャパン

 Pythonの他、C++やJavaScript、Java、C#、Shell、TypeScriptは、GitHubで最もよく使われているプログラミング言語トップ10にも入っている。逆にJuliaやR、Scalaは機械学習以外の分野ではそれほど使われていないという。

パッケージの上位やコントリビューションの上位も調べた

 次に、機械学習やデータサイエンスに関するプロジェクトのうち、Pythonにインポートされたパッケージのトップ10は次の通り。

上位の機械学習とデータサイエンスパッケージ(出典:ギットハブ・ジャパン

 ベクトル(多次元配列)処理用ライブラリのNumPyは、機械学習やデータサイエンスプロジェクトの75%で利用されていた。科学計算用ライブラリであるSciPyや、Excelのような表形式を扱うデータ構造処理ライブラリのpandas、グラフ表示など視覚化ライブラリのmatplotlibは、いずれも40%以上のプロジェクトで利用されていた。

 最後に、「machine-learning」というラベルが付いたプロジェクトで、コントリビューションが多いものトップ10は次の通りだ。

上位の機械学習プロジェクト(出典:ギットハブ・ジャパン

 1位のTensorFlowには、2位のscikit-learnに対して5倍のコントリビュータがいた。explosion/spaCyとRasaHQ/rasa_nluは自然言語処理のプロジェクトだ。

 CMU-Perceptual-Computing-Lab/openposeと、thtrieu/darkflow、ageitgey/face_recognition、tesseract-ocr/tesseractは画像処理のプロジェクトである。機械学習向け言語で6番目に人気のJuliaは、コントリビューションの多さでも4位に入った。

Copyright © ITmedia, Inc. All Rights Reserved.

スポンサーからのお知らせPR

注目のテーマ

Microsoft & Windows最前線2025
AI for エンジニアリング
ローコード/ノーコード セントラル by @IT - ITエンジニアがビジネスの中心で活躍する組織へ
Cloud Native Central by @IT - スケーラブルな能力を組織に
システム開発ノウハウ 【発注ナビ】PR
あなたにおすすめの記事PR

RSSについて

アイティメディアIDについて

メールマガジン登録

@ITのメールマガジンは、 もちろん、すべて無料です。ぜひメールマガジンをご購読ください。