AI/データ分析/データサイエンスをこれまでに学んだことがない人でも大丈夫。新卒の社会人1年生からベテラン社員まで大歓迎! ここから学び始めよう!
データを分析して、その背後にある有益な情報を取り出したい人向け。数学などの前提知識は不要! 身近に使える表計算ソフトで体験しながらデータ分析の考え方を学ぼう。
NumPyってどんなもの? どんな機能があるの? ここからデータ処理の第一歩を踏み出そう。Python入門に続く入門シリーズが開始!(2023年6月9日)
Spotifyは公式ブログで、同社が開発した新しい近傍検索ライブラリーVoyagerについて紹介した。Voyagerは実稼働環境でのSpotify推奨の最近傍検索ライブラリとしてAnnoyの後継となることを目的としているもので、GitHubで公開されている。(2023/12/09)
MetaやIBMなど50以上の組織が共同で、オープン、安全で責任あるAIを推進する「AI Alliance」を立ち上げた。(2023/12/08)
NECは、長時間の動画から利用者の目的に応じた短縮動画と説明文章を自動生成する技術を開発した。大規模言語モデルと映像認識AIを組み合わせた。1時間以上の動画から、目的のシーンの動画と説明文章を数秒間で作成できるという。(2023/12/07)
MicrosoftはAI支援を組み込んだコラボレーションツールMicrosoft Loopの一般提供の開始を発表した。Microsoft 365-Business Standard、Business Premium、E3、E5を利用する顧客であれば、Webおよびモバイルで利用できる。(2023/12/05)
日本IBMは「watsonx.governance」の提供を2023年12月1日に開始した。watsonx.governanceを使うことで、どういったLLMであってもモデルを管理、監視、統制することが可能になるという。(2023/12/05)
「5分で分かるAI・機械学習・データサイエンス」は、 「機械学習」といった人工知能やデータサイエンスに関連する誰もが知っておくべき最重要キーワードの「概要」「歴史」「違い」「仕組み」「課題」「勉強方法」などを分かりやすく5分で説明するコーナーです。
「データ&AIを活用したいなら、最初に知っておくべき全体概要」、具体的にはAI・データサイエンスの概要と、データ分析(数値予測などの分析系AI)、画像認識などの識別系AI、文章生成などの生成系AIを紹介します。
データをさまざまな角度から分析し、その背後にある有益な情報を取り出す方法を学びます。身近に使える表計算ソフト(ExcelやGoogleスプレッドシート)を利用。数学などの前提知識は不要です。
もはやAIや機械学習の実践に高度な知識は必要ない?! 前提知識ができるだけ不要で、誰でも簡単に試せるAIや機械学習をコンパクトに紹介する。手元で実際に動かし、その面白さや特徴、利点/欠点を体感しよう。
「今、画像生成AIがはやっているみたいだけど、何ができて、何がすごいのかよく分からない」という普通の人に向けて、Stable Diffusionの概要と基本的な仕組み、それを簡単に使うためのサービスなどをできるだけ分かりやすくコンパクトに紹介する連載。
「Python入門」に続くPython学習シリーズ。「Pythonは覚えたけど、次は何を学んで、どうやって膨大な量のデータを処理したらいいの?」という方に向けて、NumPy/pandas/Matplotlibといったライブラリの使い方や、それらを使って実際にデータ処理を行う方法を説明する連載。
AI・機械学習・ディープラーニングを始めるが、プログラミングについてまったく初めての人に向けて、その作業環境の選択指針やお薦めの「Jupyter Notebook」のオンライン版「Google Colaboratory」の基本的な使い方を分かりやすく紹介する連載。
機械学習の数学は難しい!? そう思っている人はこの連載から学んでみよう。サブタイトルは「― 中学/高校数学のキホンから学べる」。本連載では、小学校で習う「四則演算(足し算/引き算/掛け算/割り算)」を使って、機械学習の数学をできるだけ分かりやすく簡単に説明していく。
中学や高校で学んだ数学を題材にして、Pythonによる数学×プログラミングを学んでみよう。数学の教科書に載っている定理や公式だけに限らず、興味深い数式の例やAI/機械学習の基本となる例を取り上げながら、数学的な考え方を背景としてプログラミングを学べる連載。
AI・機械学習・ディープラーニングを始めるが、プログラムやコンピューターについてまったく初めての人に向けて、その基礎の基礎を分かりやすく紹介する連載。
AI・機械学習・ディープラーニングを始めるが、Pythonプログラミングも初めての人に向けて、Pythonでデータを取り扱うための基礎知識として、「リスト」や「NumPy」「数学のテンソル」について分かりやすく紹介する連載。
ニューラルネットワークの仕組みや挙動を、数学理論からではなく、Pythonコードから理解しよう。フルスクラッチでニューラルネットワーク(DNN:Deep Neural Network)を実装していく。
機械学習の勉強はここから始めてみよう。ディープラーニングの基盤技術であるニューラルネットワーク(NN)を、知識ゼロの状態から概略を押さえつつ実装。さらにCNNやRNNも同様に学ぶ。これらの実装例を通して、TensorFlow 2とKerasにも習熟する連載。
PyTorchの勉強はシンプルなニューラルネットワーク(NN)を実装することから始めてみよう。まずはニューロンのモデル定義から始め、フィードフォワードとバックプロパゲーション、PyTorchテンソルの基礎、データローダー、最適化、評価まで一通りを解説。さらにCNNやRNNの実装例を通して、PyTorchにも習熟する連載。
TensorFlowを使ってディープラーニングの基礎が体験できる連載。TensorFlowの概要から、インストール方法、CNN/RNNモデルの実装体験、TensorBoardの使い方までを解説する。
リクルートにおける数理最適化の応用事例の紹介を通じて、数理最適化とは何か、どのようにビジネスに応用できるのかを紹介する連載。
精度向上により、近年利用が広まっている「ニューラル機械翻訳」。その仕組みを、自分で動かしながら学んでみましょう。
データ分析/機械学習の競技大会プラットフォーム「Kaggle」についての初心者向け連載。コンペティションの内容から、事例に基づくノウハウ、実際にメダルを受賞してKaggle Masterになるための道標を示す。
Kaggle初心者がKaggleに挑戦した過程や得られた知見などを記事化していく連載。執筆者と読者が初心者レベル同士だからこそできる意見効果/悩み共有/情報提供を行っていきます。
AIやデータサイエンス、場合によってはもっと広げてPythonなどの幅広い技術を活用して、業務データの利活用や日常作業の効率化、身の回りの趣味や遊びの高度化などを試していく連載。