機械学習で50個の新惑星を確認、英国の研究チーム観測データが本物の惑星である確率を機械学習アルゴリズムで初めて判定

ウォーリック大学の研究者などを含むチームは新しい機械学習アルゴリズムを開発した。NASAの系外惑星探査衛星「Kepler」から得られた惑星候補で試したところ、50個の候補を惑星だと確認できた。

» 2020年09月09日 17時30分 公開
[@IT]

この記事は会員限定です。会員登録(無料)すると全てご覧いただけます。

 ウォーリック大学とアラン・チューリング研究者の科学者が、惑星判定に利用するために機械学習アルゴリズムを開発し、未確定データから50個の系外惑星の存在を確認する成果を上げた。

 50個の惑星には地球と似たもの、そうでないものなどさまざまな星が含まれている。直径が地球の4倍程度ある海王星並みの巨大惑星から、地球より小さいものまで幅広い。公転周期もさまざまで、わずか1日のものから200日のものまである。

太陽系の8つの惑星 右端が海王星

 研究チームが目指したのは大量の惑星候補サンプルを分析し、各候補が本物の惑星である確率を計算することだ。どの候補が本物の惑星で、どの候補がそうでないのか(偽陽性)を識別するために、人工知能(AI)の一種である機械学習に基づくプロセスを初めて利用した。

 「Monthly Notices of the Royal Astronomical Society」で発表された論文では、惑星検証技術の大規模な比較結果も掲載されている。

 ウォーリック大学の物理学部とコンピュータサイエンス学部、アラン・チューリング研究所の研究者が開発した新しい機械学習アルゴリズムは数千の惑星候補の中から、本物の惑星とそうでないものを識別できる。NASA(米国航空宇宙局)の系外惑星探査衛星「Kepler」やトランジット系外惑星探索衛星「TESS」のような系外惑星探査衛星が発見した惑星の候補から真の惑星を見つけることが目的だ。

教師あり学習を採用、誰が教師になったのか

Copyright © ITmedia, Inc. All Rights Reserved.

スポンサーからのお知らせPR

注目のテーマ

AI for エンジニアリング
「サプライチェーン攻撃」対策
1P情シスのための脆弱性管理/対策の現実解
OSSのサプライチェーン管理、取るべきアクションとは
Microsoft & Windows最前線2024
システム開発ノウハウ 【発注ナビ】PR
あなたにおすすめの記事PR

RSSについて

アイティメディアIDについて

メールマガジン登録

@ITのメールマガジンは、 もちろん、すべて無料です。ぜひメールマガジンをご購読ください。