雨天や夜間の見にくい画像、視認性を高める新手法をシンガポールの研究者が開発複数人の重なり合った画像から姿勢を推定する精度も向上

雨天や夜間に撮影した画像には課題がある。視認性が悪いからだ。シンガポールの大学の研究者がこれを改善する新手法を開発した。併せて、複数人が重なって見える画像から姿勢を推定する精度の高い手法も公開した。

» 2021年07月28日 18時30分 公開
[@IT]

この記事は会員限定です。会員登録(無料)すると全てご覧いただけます。

 シンガポールのYale-NUS Collegeは、2021年7月19日(シンガポール時間)、コンピュータビジョンを改善する3種類の手法を発表した。

 1番目は夜間に撮影した画像にある人工光の影響を抑えるもの。2番目は雨天の画像に現れている雨の影響を抑えるもの。3番目は複数人が重なって見える画像から人物の姿勢を推定する精度の高い手法だ。

雨天や夜間に撮影した画像には固有のノイズが入る

 夜間に撮影した画像は、人工光によるノイズの影響を受ける。雨天の画像は雨の筋や雨もや(ベール)の影響を受ける。

 自動監視システムや自動運転車など、多くのコンピュータビジョンシステムは入力画像の視認性が良好ではない場合、性能が低下し、場合によっては動作しなくなる。Yale-NUS Collegeの研究チームが開発した新手法は、これらのシステムの性能を向上させる可能性があるという。

 研究チームは夜間の画像と雨天の画像の画質をそれぞれ向上させるディープラーニングアルゴリズムを導入した。

夜間の画像を鮮明に

 夜間の画像を鮮明にしようと明度を上げると、ノイズや人工光の悪影響も強くなる。今回の研究の結果、明るさを高めた場合でも、ノイズと光効果(まぶしさを感じさせるグレア、にじみの効果があるグロー、投光器のようなフラッドライトの明かり)を抑え、鮮明な夜間画像を得ることができた。

左側の入力画像に開発した手法を施すことで人工光の効果を抑制し、視認性を向上できた(出典:Yale-NUS College

 開発した手法は、夜間の画像におけるグレアの影響を弱めることができる。既存の手法では処理できなかった問題だ。

既存の視認性向上手法は、グレアなどの光効果を処理できず、かえってグレアが強くなることもあった(出典:Yale-NUS College

雨天の画像から雨の影響を取りのぞく

 雨天の画像に関する研究では、フレームアラインメントを採用することで画質の低下を抑えた。複数のフレームにランダムに現れて、画質を低下させる雨の筋の影響を取り除いた。

Copyright © ITmedia, Inc. All Rights Reserved.

スポンサーからのお知らせPR

注目のテーマ

Microsoft & Windows最前線2025
AI for エンジニアリング
ローコード/ノーコード セントラル by @IT - ITエンジニアがビジネスの中心で活躍する組織へ
Cloud Native Central by @IT - スケーラブルな能力を組織に
システム開発ノウハウ 【発注ナビ】PR
あなたにおすすめの記事PR

RSSについて

アイティメディアIDについて

メールマガジン登録

@ITのメールマガジンは、 もちろん、すべて無料です。ぜひメールマガジンをご購読ください。