多層ニューラルネットワークを1チップに多層構造で実装 東京大学生産技術研究所の小林正治氏らが3次元集積デバイスを開発2次元配列の「配線問題」を解決

東京大学生産技術研究所の准教授を務める小林正治氏らは、IGZOトランジスタと抵抗変化型不揮発性メモリを3次元集積したデバイスの開発に成功した。ディープラーニングの多層ニューラルネットワークを1チップ上に多層構造で実装可能になる。

» 2020年06月18日 08時00分 公開
[@IT]

この記事は会員限定です。会員登録(無料)すると全てご覧いただけます。

 国立研究開発法人科学技術振興機構は2020年6月14日、東京大学生産技術研究所の准教授を務める小林正治氏らが、極薄のIn-Ga-Zn-O系酸化物半導体(IGZO)を用いたトランジスタと抵抗変化型不揮発性メモリ(RRAM)を3次元集積したデバイスの開発に成功したと発表した。メモリに演算機能を持たせたインメモリコンピューティングのハードウェア実装に関する課題を解決し、ディープラーニングの多層ニューラルネットワークを1チップ上に多層構造で実装可能になる。

2次元配列の「配線問題」を解決

 多層のニューラルネットワークを構成するディープラーニングは、大量のデータ処理を必要とする。そのため従来のコンピュータでは、プロセッサとメモリの間のデータ転送速度に処理性能が左右されてしまう。

 この課題を解決する方法として、プロセッサとデータをやりとりしない「インメモリコンピューティング」が期待されている。だが、通常のディープラーニング処理では2次元配列を使うため、ニューラルネットワークが大規模になるほどデータが通る「配線」が長くなり、計算の遅延や消費電力が増大してしまう問題があった。

画像 従来の2次元メモリアレー(左)と3次元集積したメモリアレー(右)のインメモリコンピューティングの概念図(出典:科学技術振興機構

Copyright © ITmedia, Inc. All Rights Reserved.

スポンサーからのお知らせPR

注目のテーマ

Microsoft & Windows最前線2025
AI for エンジニアリング
ローコード/ノーコード セントラル by @IT - ITエンジニアがビジネスの中心で活躍する組織へ
Cloud Native Central by @IT - スケーラブルな能力を組織に
システム開発ノウハウ 【発注ナビ】PR
あなたにおすすめの記事PR

RSSについて

アイティメディアIDについて

メールマガジン登録

@ITのメールマガジンは、 もちろん、すべて無料です。ぜひメールマガジンをご購読ください。