一色からは「学んできたことと、データ&AIを使う時代への変化」という題で、自己紹介として学んでいることや時代変化について、かわさきからは「誰かに何かを伝えるということ」という題でDeep Insider編集部内で議論したり考えたりしていることについて書きました。
この記事は会員限定です。会員登録(無料)すると全てご覧いただけます。
@ITのDeep Insiderフォーラムを担当しているDeep Insider編集部です。突然ですが、今月から不定期に編集後記を公開していくことにしました。
編集後記とは、編集者が記す「あとがき」のことです。一般的に編集後記では、執筆/編集時には書けなかった小話や裏話、感想などを書きます。Deep Insider編集部員は毎日、読者に関連するようなAI/データ分析のニュースや技術情報をチェックしていますので、その中でも「ぜひ読者にも知ってほしい」というネタがあったら、その内容と感想なども書いていこう考えています。
10分以内に読める内容を想定していますので、電車通勤の際などに目を通してもらえるとうれしいです。メインの編集部員は2人です。その1人分は会員登録後に読めるようになっていますが、無料ですのでこの機会に会員登録して2人分を読んでいただけるとうれしいです。
@ITのDeep Insider編集部。肩書だけは編集長。ディープラーニングを中心に機械学習とデータ分析を勉強中。電子工作も好きで、最近はミニぷぱという小型ロボット「犬」にAIを組み込んで遊んだ。コロナ禍からアニメ視聴を趣味に加えた。
まずは僕がどんな人間かを説明する必要がありますよね。大学は文学部(1999年卒)でしたが、専攻は認知心理学なので文学ではなく理系に近い実験的なことをやっていました。そのころ、ひそかに関心を持っていたのがニューラルネットワークです。
卒論は全く関係ないことをしましたが、もし大学院に行くならニューラルネットワークを使った研究か、脳に関連する研究をしたいと思っていました。その当時、さまざまな学問を統合的に扱う「認知科学」が注目されていたことに影響を受けたためです。その中で僕が一番興味を持ったのがニューラルネットワークなのです。下の写真は当時読んでいた『ニューラル・コンピューティング』という本で、中を見ると蛍光ペンで線がいっぱい引かれていました。全く内容は覚えていないのですがね……。
そんなに蛍光ペンで線を引くなんて……。引きました(うそです。ダジャレです)。ちゃんと読めばそうなりますよね。でも、Kindleで読書しているときに「誰かがここに線を引いたよ」ってのは別に教えてもらわなくってもいいかなって個人的には思っています(かわさき)。
確かに他人が引いた線は不要ですよね。ちなみに今は本に蛍光ペンで引いたりしないですけどね。あまり意味のないことだと思います(一色)。
何の因果か、その20年後、仕事でニューラルネットワークを学んで扱うようになりました。人生って面白いですよね。
そういえば『数学×Pythonプログラミング入門』でおなじみの羽山博さんもそんな感じだったような気がします(間違っていたらごめんなさい)。
僕は約5年前からディープラーニングの勉強を始めて、2017年の初回「G検定」に合格しました。その後も勉強を続けて2022年に「データサイエンティスト検定 リテラシーレベル」に合格しました。
最近では経産省が主導する「マナビDX Quest」というデジタル推進人材育成プログラムの第1タームに参加しました。同時期に始めて現在も学習を継続中なのが、「Google データアナリティクス プロフェッショナル認定証」です。
ディープラーニングから始めて、数学、統計学、機械学習、データ分析という流れで学んできています。振り返ると、初めはブームに乗っかって非常に特化した専門分野から、徐々により広範で一般的な分野、現実的なものへと、学ぶ内容が移り変わっていったと感じています。
実務でデータやAIを生かそうとすると、一般的な企業では表形式データから「需要予測」など数値予測(回帰)タスクか分類タスクを解くデータ分析が一番ニーズが多いのではないかと考えています。機械学習コンペティションのKaggleも、最初に試すコンペは表形式データのタイタニックデータから分類を予測することです(参考:『僕たちのKaggle挑戦記』)。その一方で生成系AIのブレークスルーで、より多くの人がディープラーニングによる最先端AI(人工知能)に簡単に触れるようになりました。
上記のように学んできたことに呼応し、さらに実務データを扱ったKaggle課題や、AIに関する最新のブレークスルーを受けて僕自身が、2017年当時は「ニューラルネットワークを理論から学ぼう」という姿勢だったのが、2023年現在は「データとAIが実務で使えそう、使いたい」というように変わってきました。読者の皆さんはどうでしょうか?
僕の学びの足跡は、そのまま世の中の流れに近いのではないかと個人的には思っています。この流れが行き着く先は「データ&AI活用の民主化」だと思います(参考:「2023年の『AI/機械学習』はこうなる! 6大予測」)。データサイエンティストや機械学習エンジニアという専門職だけにとどまらず、より多くのソフトウェアエンジニアがデータとデータ分析/AIを活用していくのではないでしょうか。そんなデータとAIを使う時代を意識して、僕の編集後記では読者に情報共有していきたいと思います。そこで早速、今回はAI活用について驚いたことを共有します。
この編集後記の連載用アイコンを作るために、Adobe Stockという画像素材サービスで探して見付けた画像を使いました。その素材画像のタイトルを見ると、「Abstract cyber eye created with Generative AI」と書かれていて、つまり生成系AIで作成した画像でした(※Adobe Stockは生成系AIコンテンツの受け入れを表明しています)。
編集部内でニュースネタとして画像生成AIについて話題にしたり議論したりしていましたが、よもや本当に自分がしかも仕事で「AIにより生成された画像」を使うことになるなんて……。「そういう時代が来た」と頭では分かっていても、実際に経験するとビックリしました。
ボクが担当している幾つかの連載では既に画像生成AIを使って連載用のアイコンを作っているのでした。そりゃそうか(笑)。
また、生成系AIで画像作成することをビジネスにする「AI絵師」などもSNSで話題になりましたが、上の経験から、それは現実的にあり得る話だと感じました(参考:「AI絵師、お金を稼ぐ:2ヶ月で11万円稼いだ方法・そして今後どのようにお金を稼ぐことができるか」)。ただし「画像生成したらコラージュだった件」という記事では、生成系AIで訓練データからほぼそのまま複製されてしまう研究事例が取り上げられていたので、画像の著作権を考えると、生成系AIを使ってビジネスをするのも少し怖いですね。
今回は、AIの活用がDeep Insider読者にとっても身近になってきているよ、という話でした。読者の皆さんはこの話に同意していただけたでしょうか? 同意だけでなく反対意見などがあれば、ツイートでもブクマコメントでも、編集部直通のお問い合わせでもよいので教えてください。今後の記事作りの参考にさせていただきます。今回の話が、何かの参考になればうれしいです。
大学生時代にIT系出版社でアルバイトを始めて、そのまま就職という典型的なコースをたどったダメ人間。退職しても何か他のことをできるでもなくそのままフリーランスの編集者にジョブチェンジ。そしてDeep Insider編集部に拾ってもらう。お酒とおつまみが大好き。通称「食ってみおじさん」。ただし、コロナ禍以降、「食ってみ」と人に言えなくなっちゃいましたねぇ。
Copyright© Digital Advantage Corp. All Rights Reserved.