データ分析の初歩から学んでいく連載(確率分布編)の第12回。ベータ分布は「確率の確率」とも呼ばれる分布です。ある事象の成功数と失敗数が分かっているときに、成功率が一定の範囲に入っている確率を求めるのに使われます。今回も具体例を基に、ベータ分布の利用例や、確率密度関数と累積分布関数の形を見ていきます。
データ分析の初歩から学んでいく連載(確率分布編)の第11回。ガンマ分布やアーラン分布は、待ち行列の分析などに使われる分布です。ある事象が起こる平均の間隔が分かっているときに、ある期間内にその事象が何回か以上起こる確率が求められます。今回は具体例を基に、その確率を求め、ガンマ分布の確率密度関数や累積分布関数の形を見ていきます。
データ分析の初歩から学んでいく連載(確率分布編)の第10回。指数分布は待ち行列の分析などに使われる分布です。一定期間に起こる事象の数が分かっているときに、ある期間内にその事象が起こる確率が求められます。今回は具体例を基に、確率を求めたり、指数分布の確率密度関数や累積分布関数の形を見ていきます。
データ分析の初歩から学んでいく連載(確率分布編)の第9回。F分布は分散の比に関連する分布です。2つの母集団から取り出されたサンプルを基に「それぞれの母集団の分散に違いがあるのか」を調べる場合などに使われます。F分布の確率変数と自由度の求め方を見た後、その確率密度関数や累積分布関数について解説します。
データ分析の初歩から学んでいく連載(確率分布編)の第8回。t分布は母分散が分からない場合の平均値に関連する分布です。中心極限定理を出発点とし、正規分布と比較しながらt分布の姿を明らかにしていきます。続けて、確率密度関数や累積分布関数の求め方や可視化の方法を解説し、利用例などを紹介します。
データ分析の初歩から学んでいく連載(確率分布編)の第7回。カイ二乗分布は標準得点の二乗和の分布です。標準得点とは何か、二乗することはどういう意味を持つのか、といった基本的なところからカイ二乗分布の姿を明らかにしていきます。続けて、確率密度関数や累積分布関数の求め方や可視化の方法を解説し、利用例などを紹介します。
データ分析の初歩から応用まで少しずつステップアップしながら学んでいく連載(確率分布編)の第6回。正規分布は平均値を「山」の中心として、標準偏差によって左右対称に「すそ」が広がるような形の連続型確率分布です。正規分布がどのようなものかを確認した後、確率密度関数や累積分布関数の求め方や可視化の方法を解説し、利用例などを紹介していきます。
データ分析の初歩からステップアップしながら学んでいく連載(確率分布編)の番外編。代表的な離散型確率分布に対する累積分布関数の逆関数を紹介。例えば、二項分布の累積分布関数ではn回中k回まで成功する確率が求められますが、その逆関数では何%か(以上)の確率で成功するまでの回数を求められます。
データ分析の初歩から応用まで少しずつステップアップしながら学んでいく連載(確率分布編)の第5回。幾何分布とは、k回目に成功する確率の分布です。一方、負の二項分布は、n回成功するまでにk回失敗する確率の分布です。これらの確率分布が利用できる事例を確認した後、確率質量関数や累積分布関数の求め方、可視化の方法などを解説していきます。
データ分析の初歩から応用まで少しずつステップアップしながら学んでいく連載(確率分布編)の第4回。ポアソン分布とは、出来事(事象)が、まれにしか起こらない場合に、独立な試行を何回も繰り返したときの確率分布です。そのような事例を紹介した後、確率の求め方や可視化の方法などを解説していきます。
データ分析の初歩から応用まで少しずつステップアップしながら学んでいく連載(確率分布編)の第3回。まず「非復元抽出(例:くじ引き)とは何か」を説明。その確率分布である超幾何分布を取り上げ、その意味や特徴などを解説します。
データ分析の初歩から応用まで少しずつステップアップしながら学んでいく連載(確率分布編)の第2回。推測統計の基礎となる確率分布のうち、離散型確率分布で代表的なベルヌーイ分布と二項分布の意味や特徴などを解説します。
データ分析の初歩から応用まで少しずつステップアップしながら学んでいく連載の確率分布編です。第1回は出発点として、推測統計の基礎となる確率分布の意味や種類、特徴を解説します。離散型分布と連続型分布の違いや種類、確率分布を表す確率質量関数/確率密度関数と累積分布関数の意味や特徴などを見ながら連載の全体像を紹介します。